
26

VADAF: Visualization for Abnormal Client Detection and
Analysis in Federated Learning

LINHAO MENG, YATING WEI, RUSHENG PAN, SHUYUE ZHOU, JIANWEI ZHANG,
and WEI CHEN∗, State Key Lab of CAD&CG, Zhejiang University, China

Federated Learning (FL) provides a powerful solution to distributed machine learning on a large corpus of
decentralized data. It ensures privacy and security by performing computation on devices (which we refer to
as clients) based on local data to improve the shared global model. However, the inaccessibility of the data and
the invisibility of the computation make it challenging to interpret and analyze the training process, especially
to distinguish potential client anomalies. Identifying these anomalies can help experts diagnose and improve
FL models. For this reason, we propose a visual analytics system, VADAF, to depict the training dynamics and
facilitate analyzing potential client anomalies. Specifically, we design a visualization scheme that supports
massive training dynamics in the FL environment. Moreover, we introduce an anomaly detection method
to detect potential client anomalies, which are further analyzed based on both the client model’s visual and
objective estimation. Three case studies have demonstrated the effectiveness of our system in understanding
the FL training process and supporting abnormal client detection and analysis.

CCS Concepts: •Human-centered computing→ Visualization; Visual analytics; Visualization appli-
cation domains; • Computing methodologies→ Anomaly detection.

Additional Key Words and Phrases: federated learning, visual analytics, anomaly detection

ACM Reference Format:
Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang, and Wei Chen. 2021. VADAF: Visualiza-
tion for Abnormal Client Detection and Analysis in Federated Learning. ACM Trans. Interact. Intell. Syst. 11,
3-4, Article 26 (September 2021), 23 pages. https://doi.org/10.1145/3426866

1 INTRODUCTION
Federated Learning provides a powerful solution to decentralized machine learning training with
privacy and security guarantee. Unlike the existing distributed machine learning algorithms de-
signed for highly controlled environments, FL can be used among devices in an unbalanced and
non-IID fashion. In a typical federated learning setting, training data remains locally on devices
involved. The devices perform computation on their local data to improve a shared global model
under a central server’s coordination. The participating devices are generally numerous, and the
training is an iterative process. These factors make it challenging to monitor complete training infor-
mation. Besides, FL acts as a "black box" during the training process because of its non-transparent
training data and invisible computation on devices. That is to say, the server in the FL setting has
no access to the clients’ training data, nor does it have complete control over the clients’ behaviors.
∗Corresponding author.

Authors’ address: Linhao Meng, alice.menglh@gmail.com; Yating Wei, weiyating@zju.edu.cn; Rusheng Pan, panrusheng@
zju.edu.cn; Shuyue Zhou, zhoushuyue@zju.edu.cn; Jianwei Zhang, zjw.cs@zju.edu.cn; Wei Chen, chenvis@zju.edu.cn, State
Key Lab of CAD&CG, Zhejiang University, China, 866 Yuhangtang Rd, Hangzhou, 310058.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2160-6455/2021/9-ART26 $15.00
https://doi.org/10.1145/3426866

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

https://doi.org/10.1145/3426866
https://doi.org/10.1145/3426866

26:2 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

Malicious clients can easily attack the training process to influence the behavior of the global model.
These clients which deviate from normal behaviors during the training process are considered
as abnormal clients. However, the severity of abnormal clients in federated learning is not yet
well-understood. Furthermore, the sophisticated working mechanism also puzzles ML experts in
understanding federated learning and analyzing training failure or anomaly to further improve the
model result.

Recently, researchers have studied federated optimization [28, 29], privacy enhancement [7, 40],
and application scenarios [20]. However, there has been little studies in visualizing and analyzing
the FL training process. Visualization is an effective tool to summarize complex data and recognize
hidden patterns under big data. Visual analytics can be seen as an integral approach combining
visualization, human knowledge, and data mining, facilitating the exploration and interpretation
of complex data. The visualization of FL training dynamics can help ML experts monitor and
understand the training progress. The visual analytics to abnormal clients is useful in discovering
and analyzing the abnormal iteration or client. Compared with fully automatic abnormal client
detection and treatment [34], the visual analytics system plays a part in understanding the training
process and analyzing the abnormal behaviors with an advantageous combination of expert ex-
perience. One recent work [55] builds a demonstration system and tries to interpret how the FL
system works in a demo case of a box car racing game. However, as an educational tool, the system
shows limited information and a relatively simple visual design only suitable for a small number
of clients. It still needs much consideration about how to show the abundant training dynamic
and how to effectively utilize visual analytics to contribute to the detection and analysis of the
abnormal clients in a typical FL setting.

Since federated learning is a novel distributed machine learning approach, the visual design and
implementation for anomaly detection in FL pose unique challenges. Here we summarize them as
follows:

C1. In a typical FL training scenario [19], a large number of devices participating in the FL
training process iteratively produce numerous training metrics and model weights, making it
difficult to present and analyze the training process from these massive data.

C2. Because of the inaccessibility of the training data and the invisibility of the computation,
the FL training process on the client-side acts like a "black box". We cannot detect abnormal client
and evaluate model from the data level referencing previous work [25, 50, 53].

C3. Various reasons may cause abnormal client behavior. It can be due to intentional malicious
attackers disguised as normal clients [16] or unintentional client deficiencies like poor data quality
[47, 60] and software/hardware defects. In addition, the non-IID property makes it possible that
even the benign local model can be far from the current global model before the model converges,
which aggravates the difficulty of identifying the attackers. Thus it is worth exploring different
cases of abnormal clients for model improvement.
To tackle these challenges, we develop an interactive visual analysis system, VADAF, which

visualizes the entire FL training process and empowers experts to drill down the abnormal clients
spotted by means of the anomaly detection technique. Analyzing the training process is fulfilled
by illustrating the dynamic training information at different levels of granularities. We design
several interactive views to show training information from overview to detail and also from both
perspectives of server and client (C1). Given the inaccessibility of training data, our system focuses
on model-level representation and analysis. Our anomaly detection method uses trainable model
parameters combined with statistical results of training metrics to detect potential abnormal clients
(C2). To explore different cases of client anomaly, we present an approach to analyzing client
anomaly using objective model evaluation results and visual model difference representation results
with the whole interaction of our system(C3). In this paper, we consider two kinds of attacks against

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:3

federated learning, data poison, and model poison, and compare their effects with those of benign
clients. We prove the effectiveness of our system by conducting experiments on MNIST [10, 32]
and CIFAR-10 [30] using different model options. Our approach applies to classification tasks based
on the horizontal federated learning architecture with no encryption.

To our best knowledge, this paper serves as a first attempt which combines visual analytics with
anomaly detection to assist ML experts in observing the federated learning training process and
analyze the abnormal clients. In summary, the main contributions of this paper are:

• A suite of visualization techniques for showing the rich dynamics of the FL training process.
• An anomaly detection scheme for numerous clients in a federated learning setting merely
based on the model itself and training metrics instead of training data like previous works.

• A visual reasoning technique for potential client anomaly in FL, which can help explore
different cases of client issues and measure the severity of abnormal clients.

2 BACKGROUND
In this section, we briefly introduce some basic concepts of federated learning and recent study
about attacks against federated learning, which will be useful for subsequent discussions.

2.1 Federated Learning
Federated Learning is a decentralized machine learning approach proposed by Google [6, 19, 39]. It
is proposed to solve the issue of data isolation and privacy in the era of big data. In reality, due to
industry competition, data security, and other reasons, data is scattered in different enterprises
or departments, existing in the form of isolated islands. Considering that artificial intelligence is
data-driven, it is difficult to establish an effective model without a large amount of high-quality
data. However, the traditional procedure of data integration has the risk of violating regulatory
requirements and leaking users’ privacy. In this case, how to design a machine learning framework
that can make full use of the data of different parties under the conditions of data privacy and
security is a major issue in the current artificial intelligence field.

Federated learning is proposed in the background mentioned above. The basic idea is to collabo-
ratively construct a shared global machine learning model while training data that may contain
private information remains distributed on devices like mobile phones. Yang et al. [57] categorize
federated learning into three categories based on the distribution characteristics of the data. Our
work focuses on the most commonly used horizontal federated learning in which devices share the
same feature space but little overlap in the sample space. In a typical horizontal federated learning
setting, there is one server and large numbers of participating devices. The training process is
iterative, as shown in Fig. 1. At the beginning of each iteration, a random fraction of clients is
selected. These selected clients download the current global model from the central server, perform
local computation based on the current global model and local data, and then send the updates to the
server. The server aggregates these locally-computed models with federated averaging algorithm
[39] which is widely-used for federated model training to improve the shared global model:

𝑤𝑡 =

𝐾∑
𝑘=1

𝑛𝑘

𝑛
𝑤𝑘𝑡 (1)

where𝑤𝑡 is the shared global model parameters obtained by aggregating updated model parameters
of the participating clients in 𝑡 th iteration, 𝐾 is the number of selected clients, 𝑛 is the total amount
of training data, 𝑛𝑘 is the training data amount of client 𝑘 ,𝑤𝑘𝑡 is the model parameters after training
on client 𝑘 in 𝑡 th iteration. Notice that except the averaged model parameters, the training metrics
are also averaged and recorded, which help people know about the overall training progress. Then

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:4 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

Fig. 1. Illustration of a federated learning architecture.

the next iteration begins, where 𝑤𝑡 will be the initial model for each participating client. This
training process continues till it reaches the predefined maximum number of training rounds or
the model converges.

There are several advantages of this approach [39], which differentiate it from other distributed
machine learning methods: 1) It is robust to unbalanced and non-IID data distributions. 2) It can
significantly reduce the rounds of communication needed to train a good model in the decentralized
setting. Some federated learning frameworks have been developed for experimentation with FL,
such as TensorFlow Federated [17] and Federated AI Technology Enabler [54]. Meanwhile, there
have been more and more FL architecture designs for different scenarios [57].

2.2 Attack Strategy
Federated learning guarantees data privacy by pushing model training on users’ devices. It gives
clients full control over local training but makes attackers easier to perform various attacks. Some
attack strategies specifically against federated learning have been studied by scholars recently
[14, 34]. Here we categorize the attack strategy into two types, data poison and model poison.

2.2.1 Data Poison. Since personal data is stored locally, a malicious client can attack the global
model by poisoning the training data. There are usually two kinds of aims of the attack. One is
to degrade the model’s overall efficacy [2, 23]. This can be implemented by adding artificial fake
data or shuffling the data label. We call this kind of attack random poisoning attack. The other one
is to increase/decrease the probability of the model predicting a target instance as a target class
[16]. Label-flipping can achieve this aim by flipping the labels of instances in one class to another
class. Another approach aiming at the same goal is called backdoor [4, 12]. In this approach, some
features or regions of the original training data are augmented and relabeled so that the model will
be misled to classify the backdoor instances as a target label specified by the attacker. This kind of
attack is called targeted poisoning attack.

2.2.2 Model Poison. The full control over the local training in federated learning gives themalicious
client the possibility to manipulate the local model parameters directly and upload amalicious model
to spoil the global model or achieve the backdoor attack [14, 52]. However, client selection and
model aggregation mechanisms make small deviations of single client uneasy to cause significant
damage to the global model. Drastically different model updates increase the risk of being detected
by the server. Similar to data poison, model poison has its own strategies to make random poisoning
attacks and targeted poisoning attacks. Sign-flipping achieves the attack by flipping the signs of

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:5

the local model updates [35, 56]. Additive noise approach adds Gaussian noise to the local model
updates. Both attacks aim to make random poisoning attacks [35, 56]. There also has been some
research about how to design a model replacement strategy to achieve targeted poisoning attacks
[4].

3 RELATEDWORK
3.1 Visual Analytics for Machine Learning
The monitor and analysis of the federated learning training process are essentially based on
large volumes of logs for machine learning training on the clients. The general training dynamics
representation, model evaluation approaches, etc., in visual analytics for machine learning are
worth referring to in this work. In the training process of machine learning, there are generally large
amounts of data sets involved and model parameters produced. It is a challenge itself to visualize
these big volume data, let alone help experts analyze the training process and interpret the machine
learning model with the help of visual interaction. Given the above facts, some work has been
done on interactive visualization and visual analytics to understand and analyze machine learning
models, which can assist experts in improving model performance and robustness. Most interactive
machine learning tools achieve this aim by displaying multiple kinds of training information,
including training data, features, metrics, and model performance, from which experts can get
insight from the training process and debug the failure cases. For example, Ren et al. [48] design
a performance visualization solution, Squares, for multiclass classification problems. Compared
with the confusion matrix, it shows more details from the instance level, which helps practitioners
analyze model performance faster and more accurately. But for general usage scenarios in which
only the count-based metrics matter, Squares is a little complicated. Zhang et al. [59] propose a
generic framework named Manifold to support debugging and comparison of different machine
learning models in an interactive manner based on model performance and features extracted.
Amershi et al. [3] present an interactive visualization system supporting performance analysis and
debugging in machine learning. This system displays training information and graphs within a
single compact visualization. Similarly, Kahng et al. [24] develop a visual analytics system, ACTIVIS,
which is flexible in exploring many different complex deep neural network models for classification
tasks. As deep learning grows, recent studies in visual analytics focus on some specific deep learning
models, such as convolutional neural networks (CNNs) [36, 38], recurrent neural networks (RNNs)
[42, 51] and deep generative models (DGMs) [37]. They try to visualize the model structure and
introduce some manipulable visualization designs suitable for large volume data. Moreover, some
of these work visualize and analyze models from the model level. For instance, Liu et al. [36]
introduce some visual encodings to show the layer-level or even filter-level information for CNN
models. They use a pixel chart to present filter-level information. The weakness is that it takes
too much rendering space and resources, while the effective information is minimal. Besides that,
TensorBoard [1], which provides a suite of visualization and tooling to track training dynamics,
uses histograms to show model information like weights, biases, or other tensors. Rauber et al.
[46] propose a point-based projection technique to explore the relationship between neurons and
classes, and the similarity between neurons by means of dimensionality reduction. These works
also prove the value of visualization feedback for model analysis and evaluation.

Federated Learning, as a new framework of training distributed machine learning models, attracts
much attention of researchers in the field ofmachine learning. However, there has been little relevant
visualization design to represent the FL training process. Wei et al. [55] propose a multi-agent
visualization system to illustrate how a typical FL system works as an educational tool, but the
design is relatively simple. The visual design of this system mainly includes several statistical charts,

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:6 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

such as histograms, radar charts, and line chart. These statistical charts are only suitable for a
small number of clients. For the usual federal learning training scenarios with thousands of clients,
the visualization design is not universal. The main difference between the existing visualization
work of machine learning and the expected visualization of federated learning is that the latter
requires consideration of the distributed environment in which a large number of clients involve in
the training process and produce large amounts of data. In addition, training data is not available
in the federated learning setting, which means we cannot use traditional methods to analyze the
failure or anomaly in the federated learning training process from the data level. Nevertheless, the
model-level design and analysis methods in the previous work can be used for reference. We also
get inspiration about how to design visualization for general training logs and model evaluation
results from the previous work.

3.2 Visualization for Distributed System
The FL training process is completed together with the participation of the clients and the server.
Notice that Federated Learning is a distributedmachine learning framework, the existingwork about
visualization for distributed systems has reference value for us in visual design. Gunter et al. [18]
describe a system called NetLogger, which enables diagnosis and debugging in distributed systems.
This system includes an interface for visualizing the log data and state, in which three types of graph
primitives are introduced to represent different events in the distributed system. Similarly, Cosma
et al. [13] present a visual solution for comprehending the design of distributed software systems,
which uses colored rectangles to represent distributable feature cores. Beschastnikh et al. [5] design
a new distributed system debugging tool, ShiViz, to visualize distributed-system executions. It
combines time flow to display the distributed system’s execution and different graphics to represent
the events. These work focus on the display of the workflow in the distributed system, and in the
meanwhile, they design multiple visual elements to represent different events or features. These
visual element designs are helpful. However, in the FL setting, we do not care about different clients’
workflow but only the training metrics and results sent to the server in each iteration. Kutzleb
[31] creates a visual analytics tool to help domain experts explore data collected from distributed
systems from the cluster level. All of the above work show the client information either from
the single-client level or from the cluster level and lack an interactive tool to connect the views
of different perspectives. In our work, we use small colored rectangles to represent participating
clients and add different designs to indicate the different features or attributes of these clients.
Furthermore, we apply an overview-to-detail visualization to support the display and exploration
of all the clients’ statistical data in each iteration and the specific client information.

3.3 Anomaly Detection
In the field of data analysis, it is often necessary to determine which instances stand out as being
different from all others. Such instances are generally known as anomalies or outliers, and the
goal of anomaly detection is to determine all such outliers. Anomaly detection can help us identify
outliers during data preprocessing, and then we can remove the outliers or use some other methods
to process these outliers, such as replacing the outliers with average values. Experimental results
show that reducing the effect of the outliers in the data set can significantly improve the accuracy
of the training results statistically.
When dealing with the client model sent to the server in each iteration during the FL training

process, themodel outliers raise concern, whichmay lead to bad aggregatedmodel results. Therefore,
it is necessary to take some measures to find these model outliers. Since the client models are not
labeled as normal or abnormal, we need to use unsupervised anomaly detection methods to find
the abnormal model. In an unsupervised anomaly detection algorithm, data is scored solely based

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:7

on its intrinsic properties, typically like distances [26, 27, 45] or densities [9], and then we can
discriminate the anomalies according to the calculated scores and the set threshold. Inspired by this
idea, we calculate the distances between client model vectors and aggregated model vector in each
iteration for outlier detection by taking the server aggregated model as a baseline. Besides, statistical
properties of data distribution such as mean, median, and quantiles can also be used for anomaly
detection [22]. In this paper, we refer to the work of Leys [33], in which a method using median
absolute deviation (MAD) is presented to detect outliers. We apply it in a half-normal distribution
to find the outliers of the distance sequence. In addition to the above-mentioned statistical anomaly
detection, there are many machine learning-based techniques for anomaly detection. For example,
as an unsupervised learning method, clustering is an effective method to detect outliers, in which
data instances that fall outside of these cluster groups could potentially be marked as anomalies
[43]. However, generally speaking, the statistical analysis is applicable to various data sets for
anomaly detection. Otherwise, it is much easier to interpret the anomalies from a statistical point of
view. Similar work about malicious client detection in FL has been done by Li et al. [35], in which
the central server applies spectral anomaly detection method to detect abnormal model updates and
remove them in the aggregation process. This approach achieves good performance in improving
model accuracy, but it requires additional calculations to train an encoder-decoder model using
preprepared normal instances, which may not be representative of abundant training data.

There have been some relevant works about defense against client attacks in the FL setting [15].
Li et al. [34] use a pre-trained autoencoder model as the baseline to calculate the anomaly score
of all the client models and use it to eliminate the anomalies’ adverse impacts in the aggregation
operation. Fung et al. [16] propose a defense method named FoolsGold, which adjusts the learning
rate based on contribution similarity in the training process to defend sybil-based poisoning attacks.
The above works focus on designing the defense strategy to mitigate the effect of malicious clients
in the training process. However, the actual impact of malicious clients and the effect of these
defense strategies in a non-IID setting are not well evaluated.

4 VADAF
In this section, we introduce our system, VADAF, from requirement analysis to system design. We
also describe the data and model we use for training in this paper, as well as our anomaly detection
method.

4.1 Requirement Analysis
VADAF was developed beginning with the identification of a few design requirements based on the
authors’ direct survey of federated learning and discussions with experts who have experience in
FL. These high-level requirements also address the challenges proposed in the introduction section
in a targeted manner. Here we summarize them as follows:

• R1 - Providing an overview of the federated learning training process from both
views of server and client. As illustrated in C1, FL training is an iterative process in which
a central coordinating server and a set of clients make a concerted effort to train a high-quality
centralized model. This process produces large amounts of intermediate data, such as loss,
accuracy, and the number of clients in one iteration, which can be used to specify the training
progress and diagnose training failure. However, visualizing all the training dynamics will
cause severe visual clutter. Considering the magnitude of intermediate data, we display the
server and clients’ overall statistics data as an overview of the FL training process. It can also
serve as an entry point for analyzing specific iteration or client. This overview should also

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:8 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

help users spot certain iterations or clients of interest, which may show obvious anomaly on
loss or accuracy.

• R2 - Connecting the overall statistics with detailed training dynamics of numerous
clients. A high-level statistics overview is used as an entry point for the analysis of the
FL process. We cannot get exhaustive information about some specific iteration or client
from the statistics data. Therefore, as a complementary solution to C1, an overview-to-detail
visualization is essential to connect the overview statistics with detailed training dynamics.
By zooming in to the details, users can further examine iterations of interest and potential
client issues from finer granularity.

• R3 - Supporting detection of abnormal clients. Anomaly detection is a technique aiming
to find unusual patterns that do not conform to expected behaviors [11]. In the FL setting,
clients train a model based on local data and send model updates to the server. The client
training process acts like a “black box” because of the inaccessibility of training data and
the invisibility of the computation, which also increases the risk of client attacks by sending
malicious updates. For this reason, detecting client anomaly on the server-side is crucial for
an aggregated optimal global model. This area is not thoroughly studied but worthwhile for
FL research. Furthermore, as mentioned in C2, the inaccessible training data and invisible
computation make it impossible to detect abnormal clients from the data level. We should do
anomaly detection using training metrics and model parameters.

• R4 - Supporting analysis of abnormal clients. In the FL training process, distribution and
non-IID property cause different clients to have totally different training progress. Clients
that participate in less training or have some special but valued data may be treated as
anomalies compared with other clients that have well-trained model results. Therefore, it
is essential to analyze the abnormal clients and distinguish whether they are malicious or
benign. Utilizing the analysis results, users can explore more simple and straightforward
methods to distinguish different anomaly cases. This requirement is drawn by the challenge
C3.

4.2 System Overview
The above-mentioned requirements motivate us to develop a visual analytics system, VADAF, for
abnormal client detection and analysis in federated learning. This system includes three major
modules:

• A data storage module that stores all the training logs of the server and clients in the
federated learning training process.

• An analysis module that supports multiple statistical and analytical tasks, including ab-
normal client detection (R3) and analysis (R4).

• An interactive visualization module that discloses the training dynamics from different
levels and perspectives and also provides users with a way of exploring and analyzing the
training process (R1, R2).

As shown in Fig. 2, the pipeline of our system begins with the data storage module. We train
our model in a simulated FL setting under the TensorFlow federated framework. The training
logs are stored in MongoDB during the training process and organized into two parts. One is
related to the client, which is produced directly in the client training process. It contains trainable
model parameters(variables), performance metrics(loss and accuracy), and evaluation results. We
evaluate each client model’s performance using randomly selected data from the test dataset in
each round and store the predictions and true labels to generate the confusion matrix for use in the
visualization module. The other is acquired from the server-side and mainly includes two types

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:9

Fig. 2. System overview. VADAF consists of three key modules: Data Storage module, Analysis module and
Visualization module.

of data, averaged model parameters and aggregated metrics. On top of the data storage module,
we build an analysis module and visualization module. The analysis module provides statistics
summary and data aggregation function for multi-level data display. The statistics results can also
help experts locate some iterations of interest in which many clients may have relatively high loss
and low accuracy. Besides, our anomaly detection method is integrated into the analysis module,
and the results of abnormal client detection will be presented in the visual interface. This method
finds abnormal clients based on the client model parameters sent to the server in each iteration,
differing from anomalies with high loss and low accuracy. The visualization module consists of
four coordinated views. It is supported by the data storage module and analysis module. Apart
from displaying training dynamics, our system provides a method of analyzing abnormal clients by
interactively exploring abnormal clients in the visual interface based on model evaluation results
and model difference representation results. The cases of client anomaly are much complicated.
With the help of visualization techniques and the analysis module, we can drill down the FL training
process and figure out probable client anomaly causes.

4.3 Data and Model Description
In this paper, we use the classic MNIST data of digit images and CIFAR-10 dataset as training data
for model construction to demonstrate the effectiveness of our system.

4.3.1 MNIST Dataset. Different from traditional machine learning methods, federated learning
requires a federated non-IID data set, which is an inherent data property in FL. Therefore, the
dataset we use in our work is a federated version of MNIST [10]. It consists of 341,873 28 × 28

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:10 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

Fig. 3. Backdoor on CIFAR-10. Images with certain features are mislabeled: a) purple cars are classified as
airplane. b) planes with sunset background are classified as truck. c) cars with vertically striped walls in the
background are classified as bird.

grayscale images in the training data and 40,832 images in the test data with ten classes. These digit
images are keyed by their original writers. We suppose these digit images of different writers are
located in different simulated clients. Because of the unique style of different writers, this dataset
exhibits non-IID property expected of federated datasets. In our experiment, we suppose these digit
images of different writers are located in different simulated clients, and there are 3383 clients in
total. In a typical federated learning scenario, the number of clients participating in training is likely
very huge, only a fraction of which may be available for training at a given time. We simulate this
condition by randomly sampling 100 clients from a total of 3383 clients in each round of training.

4.3.2 CIFAR-10 Dataset. The CIFAR-10 dataset [30] contains 50,000 32 × 32 color images in ten
object classes as training data and 10,000 images as test data. To simulate non-IID property and
supply each client with unbalanced instances from each class, we divide the 50,000 training images
into 500 clients using a Dirichlet distributionwith a hyper-parameter of 0.9. Moreover, for simulating
poison data attacks, we process the dataset as follows. We select 20 clients as random poisoning
attackers, in which ten clients’ labels are totally messed up, and another ten clients’ labels are
messed up with a 50% chance. In addition, we select five clients to simulate targeted poisoning
attacks. One client flips all the airplane labels to bird and another one flips all the cat labels to dog.
The other three are used for backdoor attackers in which three features are chosen as the backdoor
[4] : purple cars (14 images), planes with sunset background (28 images), and cars with vertically
striped walls in the background (14 images), as shown in Fig. 3. We change the labels of purple cars
to airplane, planes with sunset background to truck and cars with vertically striped walls in the
background to bird. In each round, 50 clients are randomly selected to participate in the training.

4.3.3 FL Tasks. For the MNIST dataset, we train a softmax linear regression model with 7850
trainable model parameters. We run 100 rounds with a learning rate of 0.02. The learning rate is
decreased by a factor of 0.9 every two rounds. Each client selected in a round is supposed to train
the local model for ten epochs. To simulate the model poison attack, we apply two methods in
the training process, including sign-flipping and additive noise. We choose 1% clients to do the
sign-flipping and 4% clients to add additive noise on their models. The 4% clients are split up evenly
into four parts, each with the standard deviation of 0.1, 0.01, 0.001, 0.0001 to generate gaussian
noise. These clients will do the model poison before the model aggregation process when they
participate in the training round. As for the CIFAR-10 dataset, VGG11 model is chosen. Given that
CIFAR-10 images have a small size of 32x32, we remove the last two convolutional layers and keep
the remaining nine layers for training. We train six local epochs for each client in each round with

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:11

the initial learning rate of 0.001. The training is supposed to run 80 rounds. Since the VGG11 model
is too large and not suitable for storage and analysis, only the last fully connected layer consisting
of 40970 parameters, is stored in our database for abnormal client detection and analysis.

4.4 Abnormal Client Detection
The anomaly detection approach in FL aims to detect abnormal clients in each iteration. In this paper,
we achieve this goal based on two kinds of data, training metrics and trainable model parameters.
The training metrics consist of loss and accuracy of client training. On the one hand, we apply
box plot rule [44] to training metrics and show the statistical results in the interface to discern the
loss or accuracy outliers, which may indicate the potential anomaly in the training process. On
the other hand, we use model data directly to detect the anomaly from the model parameters. We
suppose that only a small fraction of clients are anomalous in FL. Thus the aggregated model is
generally a good reflection of training results in the corresponding iteration. It can be seen as a
baseline of our anomaly detection method. We calculate the euclidean distance of the client model
vectors and the aggregated model vector at first. The distance sequence reveals the different client
model deviations from normality. The next step is to find all the outliers on the basis of the distance
sequence, which indicates potential abnormal clients. As mentioned above that only little clients
are anomalous, and most client model data is distributed close to the aggregated model, we can
view the statistical distribution of distance sequence as half-normal distribution. Here we apply
an anomaly detection method using MAD [33] in the case of half-normal distribution. MAD is a
robust measure of the variability of a univariate sample of quantitative data. For distance sequence
𝑑1, 𝑑2, . . . , 𝑑𝑛 , the MAD is defined as the median of the absolute deviations from the data’s median
[21]:

𝑀𝐴𝐷 = 𝑏 ∗𝑀𝑖 (|𝑑𝑖 −𝑀 𝑗 (𝑑 𝑗) |) (2)
where 𝑑 𝑗 is the original distance sequence, and 𝑀𝑖 is the median of the series. As for 𝑏, it is a
constant associated with the assumption of normality of the data, disregarding the abnormality
induced by outliers [49]. 𝑏 can be calculated by 1/𝑄 (0.75), where 𝑄 (0.75) is the 0.75 quantile of
the data distribution. For half-normal distribution, 𝑏 = 0.8676. The multiplication by b is pivotal.
Otherwise, the formula for the MAD would only estimate the scale up to a multiplicative constant.
The rejection criterion of a value is formulated as:

𝑑𝑖 > 𝑀 + 3 ∗𝑀𝐴𝐷 (3)

where𝑀 is the median of the data. That is, all the client models with a distance from the server
aggregated model bigger than𝑀 + 3 ∗𝑀𝐴𝐷 are viewed as anomalies and marked on our projection
view. The threshold 3 is a conservative choice for our criterion. According to the paper of Miller et
al.[41], we can also choose 2.5 (moderately conservative) or even 2 (poorly conservative).

5 USER INTERFACE
In this section, we describe the visual design of the VADAF interface (Fig. 4) in detail, which contains
four views, namely, the Main View, the Client View, the Projection View and the Model View to
assist users in understanding and analyzing the FL training process. The Main View shows the
training dynamics from different levels combined with focus+context techniques. It also works as
the entry point of our system. Experts can identify some iterations of interest according to statistics
information in the Main View and further explore these iterations interactively. The Client View
displays training information from the perspective of client. The Projection View marks all the
potential abnormal clients in a two-dimensional projection result. By interactively exploring these
anomalies in the Projection View and examining evaluation results of client model in the Model
View, experts can get insight from these anomalies.

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:12 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

a4

a3

a2

a1

a

b

d

d1

d2

c

c4

c2

c3

c1

Fig. 4. Interface of VADAF, which contains the following: (a) a Main View that shows the entire training
dynamics from overview to detail; (b) a Projection View showing an overview of normal and abnormal clients
in a certain iteration; (c) a Client View containing all training information of a certain client; (d) a Model
View depicting the model difference representation and model evaluation results.

5.1 Main View
The Main View (Fig. 4 (a)) presents the overall FL training dynamics to help users locate some
iterations of interest. Considering a large number of training logs produced by clients in immense
iterations, we employ focus+context technique and design a three-row visualization, which allows
users to explore the overall training process and study areas of interest in detail.
The third row (Fig. 4 (a1)) shows the averaging accuracy and loss trend of the whole training

process on the server-side using a line chart. The line representing accuracy is colored in red, while
the line for loss is colored in blue. Once an iteration range is selected, the second row (Fig. 4 (a2))
displays the details of the selected iterations from the client perspective. Each iteration contains two
box plots depicting the distribution of clients’ loss and accuracy, respectively. The color of box plots
is encoded as same as the line chart in the third row. The yellowish background of each iteration
is colored with respect to the total amount of training data in the corresponding iteration. The
loss and accuracy outliers are spotted as individual points. These outliers indicate some probable
training problems, which can help users locate the iterations of interest. When iterations of interest
are selected, the first row (Fig. 4 (a3)) presents the detailed client information in these iterations
by column. In the column header, the index of iteration and the number of clients participating
in this iteration are displayed at the left and right end, respectively. In the column body, all the
clients participating in this iteration are organized as a square shape pixel diagram (Fig. 4 (a4)).
Each square represents a client and is colored based on the size of the training data. Notice that
the clients are vertically grouped based on the number of rounds they participate in FL training,
and the grouping rule can be customized by adding segment stop and adjusting its location in
the segmentation editor box (Fig. 5 (a)). The add operation can be accomplished by right-clicking
mouse button, and the adjustment operation can be done by left mouse dragging the corresponding
segment stop left or right. We design segmentation editor box because a large number of clients are

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:13

not friendly to exploration. Users can have a more intuitive understanding of client training stages
by way of segmentation. It can also contribute to the analysis of the model performance of clients
who have different training rounds. For example, some clients may just participate in the training
at the first time and the local training is far from convergence. Compared with other clients which
have been in multiple training rounds, the training metrics or model of this kind of clients may be
regarded as anomalies. By making segmentation of the training rounds, we can distinguish cases of
this kind from the malicious attacks. As for the square shape pixel diagram(Fig. 5 (b)), segment
identification and the number of clients in this segmentation are shown at the top of each group.
The outliers spotted in the box plots are highlighted using squares with the blue or red border.
The blue border indicates the client with a loss outlier, while the red border indicates the client
with an accuracy outlier. The squares with both blue and red borders have both loss and accuracy
outliers. When users hover over a client square, the square will show with an extra black border
and a tooltip displays training information of the client (i.e., client index, training rounds, accuracy,
and loss). The client selected is also bordered with black color. In addition, to make the system
more informative, we summarize the information of the selected iteration and client in the text in
the top left of the Main View.

Fig. 5. Illustration of design details in the Main View: (a) segmentation editor box; (b) client pixel diagram.

5.2 Projection View
The Projection View (Fig. 4 (b)) aims at providing an overview of normal and anomalous clients in
a certain iteration to guide users to diagnose the training process. Once a client is selected in the
Main View, all the clients in the same iteration are projected onto a 2D space and encoded with
points. In our system, we adopt the method of multidimensional scaling (MDS) [8] based on all the
client model vectors in one iteration. This is because MDS can reflect the relative distance between
each client and server. Moreover, to show the relationship between the server and all clients, we
move "server" to the center of the view by performing a linear transformation on the MDS result.
Considering that there may be too many clients, making the Projection View visually confusing,
we provide zoom interaction. For anomaly detection, we use the method described in section 4.4 to
automatically detect potential clients with model anomaly and mark the anomalous clients using
orange points. The other normal points are colored by green. In addition to the abnormal clients
detected above, there are other kinds of anomalies with abnormal training metrics, as mentioned
in the Main View. To better identify the clients with various anomalies, the point border is colored
in a different style. Specifically, the red border encodes the client with accuracy outliers, and the
blue border encodes the client with a loss outlier. The client with both accuracy and loss outlier is
encoded using a half red half blue border. Once a client is selected, the corresponding point will be
enlarged to help users locate the chosen client.

We can see that the projection points are distributed in a circle shape. The server is located at the
center with clients in the same iteration scattered around. The orange points which are detected

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:14 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

as anomalies using our anomaly detection method are distributed far around the server. In the
meanwhile, the points with loss or accuracy outliers are generally far away from the server. That is
to say, our anomaly detection method is verified by the MDS projection technique in which the
distances between the points indicate the similarity of them. In our work, we use euclidean distance
to measure the deviations between the client model and the baseline. But we have to mention that
other distance metrics are also workable in our method. The euclidean distance is just the most
intuitive one. If using cosine distance as the model distance metric, we need to make it consistent
with the distance metric in MDS. Then we can find that the outliers will distribute within a specific
angle.

5.3 Client View
While the two views mentioned above provide an overview of server and clients’ information, it is
still insufficient. Users cannot see the training information of the client throughout the iteration.
Therefore, we visualize the main training log (including iteration count, data size, training accuracy,
and training loss) in the Client View (Fig. 4 (c)) to facilitate the analysis of some probable anomalous
clients. Specifically, four line charts appear when users select a client in the Main View or the
Projection View. These charts are interactively linked by vertical lines indicating the corresponding
iteration when users only hover over one chart, helping users examine the information of the same
iteration. The tooltip beside the vertical line shows specific training log values. In addition, users
can click the points on the line to select an iteration, and then the other three views will switch to
the information for that iteration.

5.4 Model View
The Model View (Fig. 4 (d)) serves the microscopic exploration of training information from
the model perspective, supporting the further analysis of abnormal clients. This view is com-
posed of model difference representation (Fig. 4 (d1)) and model evaluation results (Fig. 4 (d2)).
The model difference representation aims to compare the model trainable parameter differences
(|𝑝𝑎𝑟𝑎𝑚𝑠𝑒𝑟𝑣𝑒𝑟 − 𝑝𝑎𝑟𝑎𝑚𝑐𝑙𝑖𝑒𝑛𝑡 |) between the server and client model. We use a rectangle to present
these differences. The rectangle consists of multiple thick bars that have the same width, each
representing a difference. These bars are encoded using a sequential color scheme. A darker bar
represents a larger difference value. Considering a large number of parameters, we have merged
tiny differences (< 0.01). Specifically, we merge consecutive tiny differences in the parameter list
into a white bar, which means that the difference is 0. This can reduce visual clutter and make thick
bars look more intuitive than keep all differences. When the diagram presents fewer bars, or the
color of bars is relatively light, it means that the parameter differences are relatively small. The
model evaluation results are shown in a confusion matrix, which is commonly used, presenting
the accuracy of the client model. As shown in (Fig. 4 (d2)), each column of the matrix depicts the
instances in a predicted class, and each row depicts the instances in an actual class.

5.5 Interaction
VADAF supports a set of interactions to help users switch between the four coordinated views.
First, when users create a brush by clicking on the context area and dragging the mouse to select
the extents of the brush, the box plot part, which is also called the focus area in the focus+context
display, will display the details of the selected area of the context. Through the box plot, users
can observe the client training metric distribution in each iteration and determine some iterations
of interest in which there are maybe more outliers or some outliers with greater deviation. Once
some iterations are selected, they will show as pixel diagram on the top of the Main View. When
users select a client by clicking a square of the pixel diagram, the corresponding iteration is also

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:15

regarded as selected, and the outlier will be highlighted if the represented client has the outlier in
the iteration. Meanwhile, the Projection View displays the overview of the server and clients of the
selected iteration for further exploration, the Client View shows the detailed information of the
selected client, and the Model View presents model information in the corresponding iteration. In
addition, when selecting a client in either the Main View or the Projection view, not only will the
Client View show the detailed information of the selected client, but the Model View will present
trainable model parameters of the client in the corresponding iteration. Moreover, the chosen
client model will be evaluated automatically and the evaluation result displays in the form of the
confusion matrix.

6 USE CASES
In this section, we conduct a series of experiments using the data described in section 4.3 with
our collaborating experts’ assistance. Here, we present three use cases to demonstrate the primary
usage of VADAF to understand the training process of FL and evaluate the effectiveness of our
system in analyzing abnormal clients in FL.

(a)

(b)

Fig. 6. Client distribution in the early (a) or late (b) stages of the iteration.

6.1 Case 1: Understanding FL training process
We trained a softmax linear regression model on the MNIST dataset and got the training result
for display and analysis in our system. Before selecting any iteration of interest, we can notice
that the training converges fast, as shown in the Main View (Fig. 4 (a1)). This benefits from the
mechanism of FL that it enables clients to train a model collaboratively. By brushing different ranges
of iterations, it can be found that there is an interesting pattern in the box plots. As the training
iteration proceeds, the distribution of the clients’ loss and accuracy first change from concentration
to dispersion (Fig. 6 (a)) and then to dense (Fig. 6 (b)), and the outliers become obvious. This is
because the training has not converged at the beginning. And as the training goes on, the normal
clients’ models gradually converge, while the anomalous clients appear very different. Here we
take the iteration of index 94 as an example to explain how to explore the abnormal clients using

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:16 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

N
o

rm
a

l
c
lie

n
t

(C
lie

n
t:
 f
1

6
6

4
_

0
4

 I
te

ra
ti
o

n
:
9

8
)

G
a

u
s
s
ia

n
 n

o
is

e
 (

s
td

=
0

.1
)

(C
lie

n
t:
 f
3

3
7

0
_

3
7

 I
te

ra
ti
o

n
:
6

5
)

S
ig

n
-f

lip
p

in
g

(C
lie

n
t:
 f
1

0
6

0
_

1
3

 I
te

ra
ti
o

n
:
5

2
)

Fig. 7. The analysis result of a normal client and two clients with model poison.

our system. In its corresponding pixel diagram, we divide the clients according to their training
times using the segmentation editor box and a client (f3462_15) with both loss and accuracy outlier
in the last segmentation gets our attention. It has gone through multiple iterations but still does
not converge. Once this client is selected, we can explore its details in the other three views. In the
Projection View (Fig. 4 (b)), we observe that the selected client shown as an enlarged orange point
bordered with half blue and red color is far away from the server in the center. This means that
this client’s model is pretty different from that of the server, and it has been detected as an outlier
automatically.

After confirming an anomalous client, to further analyze such anomaly, we switch to the Model
View and the Client View to look for additional clues. As shown in the first row in Fig. 7, the model
of the normal client is similar to that of the server. For instance, the trends of loss and accuracy in
the Client View are similar to the trend of the line chart in the Main View, that is, the loss gradually

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:17

(a) (b)

Fig. 8. Poor data quality with: (a) skewed digits and (b) incomplete digits.

decreases, and the accuracy gradually increases. In addition, the model difference representation of
a normal client only presents a few bars, and the color is light, which means that the difference
from the server is very small. And the model evaluation result is good with high accuracy. On the
contrary, the result of the abnormal client (f3462_15) is pretty different. As shown in Fig. 4 (c), the
trend of loss and accuracy look normal, but continuous training does not improve the model a lot.
The model difference representation presents a lot of bars, and the model accuracy is relatively
low (Fig. 4 (d)). Moreover, to explore more details, we try different interactions of the system. For
example, we select clients in the Projection View or click the points in the Client View to track
clients’ performance. During the exploration, we notice that several clients have similar visual
patterns with the client f3462_15. Then we trace back to the original training data and find that
the digits are either skewed or missing, as shown in Fig. 8. Although these clients are identified as
outliers in our system, their performance metrics and evaluation results are significantly better
than malicious clients in Fig. 7. This shows how the model difference representation and the model
evaluation results play their role in discerning the malicious clients.

Fig. 9. Training on MNIST dataset with model poison.

6.2 Case 2: analyzing model poison in FL
In comparison with the normal training process without attack in case 1, we ran the same model
on the MNIST dataset with model poison, as illustrated in 4.3.3. We suppose all the attackers just
make small adjustments on the model. Otherwise, attackers’ models can be filtered out simply
referring to the model parameter threshold set by the server. Since the number of attackers is
usually very small compared with the participating client amount, the effect of the model poison is
not big on the global model. As shown in Fig. 9, when adding model poison, the training converges
slower and the training metric fluctuations are greater than the training result in case 1. Given
that all the model poison is added just after local training and before model submitting, these
attackers can not be identified according to training metrics (loss and accuracy), but only based
on the model itself. To be specific, these clients with model poison generally can not be identified
as outliers in the box plot, but using our model anomaly detection method, they are marked as

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:18 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

orange points and can be easily observed since they are distributed in the outermost far away from
the central server in the projection view. We made statistics on the results of our model anomaly
detection method. For gaussian noise with a standard deviation of 0.1 or 0.01 and sign-flipping, our
method can identify these attackers with 100% accuracy. But it is not practicable when the model
poison is small, for example, using gaussian noise with a standard deviation of 0.001 or smaller
for this training. When discovering these abnormal clients in the projection view, the in-depth
analysis can be carried out with other views. These clients with model poison show an abnormal
pattern in the model difference representation or low performance in the model evaluation result.
For instance, as you can see in the second row of Fig. 7, the client (f3370_37) having gaussian
noise with a standard deviation of 0.1 is well trained in terms of training metrics. However, the
model difference representation shows additional noise characteristics, and the model evaluation
result is not good. In the third row of Fig. 7, the model of the client (f1060_13) with sign-flipping
attack shows no classification ability and has multiplied model parameters’ characteristics in model
difference representation. In addition, model evaluation results demonstrate that our model is not
sensitive to gaussian noise within a certain range. In this experiment, gaussian noise with standard
deviation lower than 0.01 does not cause obvious performance degradation.

Fig. 10. Detection rate of the abnormal clients in CIFAR-10 FL training with data poison.

6.3 Case 3: analyzing data poison in FL
Here we use the processed CIFAR-10 dataset to simulate data poison and simplified VGG11 model
to do the FL training as illustrated in 4.3. The training accuracy can achieve 99% and the training
loss is close to 0.1 after 80 rounds. In our experiment, after the training converges, the clients
with data poison are generally identified with loss or accuracy outliers in the box plot or detected
as anomalies using trainable model parameters, except for the clients with label flipping. The
detection rate of abnormal clients in divided training round intervals using our method based
on model parameters is displayed in Fig. 10. Since label-flipping is only applied to images with a
specific label, and the number of the images with this label is very small compared with all the
training data on one client due to the non-IID property, anomaly detection does not work for a small
amount of label-flipping poison in our case. For the other two types of data poison, random poison
and backdoor, the detection rate rises as the training gradually converges. In theory, the effect
of abnormal clients with data poison can reflect on both training metrics and model parameters,

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:19

especially for random data poison. These clients with data poison can degrade the training model
and show the high loss or low accuracy in the training process, thus they can be easily recognized as
outliers in the box plot. However, when using a model with large effective capacity [58], overfitting
is likely to happen. This may cause the anomaly detection based on training metrics to fail. In this
case, anomaly detection only depends on the trainable model parameters.

7 EXPERT FEEDBACK
The feedback of three expert users, including a professor in the field of machine learning and two
Ph.D. students having experience in federated learning, is collected based on one-on-one interviews
in the process they use our system analyzing the FL training on the MNIST dataset, which is
summarized below.

Visual Design. The experts confirmed that the Main View is effective in observing the overview
of the training dynamics and locate some iterations or clients of interest. E1 commented that “the
box plots are informative in terms of displaying the training progress of both the clients and the
server.” E2 said that “the pixel diagram is impressive for showing all the details in each iteration.” In
particular, E3 emphasized that “it is tough and especially difficult to visualize the training dynamics
for both the clients and the server. The Main View is effective in achieving this goal.” All the experts
agreed that the Projection View intuitively shows all the anomalous clients and the deviations from
the server model. When asked about the Model View, E2,3 felt the model difference representation
design successfully illustrates the potential cause of the deviations in the Projection View, but the
information behind the difference representation is limited when the number of model parameters
is big since it is not practical to compute and draw all the model deviations. They also affirmed the
confusion matrix in the aspect of model evaluation.

Abnormal client detection. All the experts were interested in the topic of abnormal client
detection. They agreed on the usefulness of the anomaly detection method supported in our system.
E1 commented that “the anomaly detection method based on the distances between the model
parameters is effective. This system is useful in automatically finding out the malicious clients”.
E2 mentioned that “the effectiveness of the anomaly detection method is further verified by the
projection results.” E3 suggested that “the abnormal client detection method can be combined in a
real-time FL training system for removing the abnormal clients automatically and improving the
global model.” They both felt the anomaly detection algorithm is able to accomplish its purpose in
this setting but it still needs more improvement for utilization under various real attacks.

System. The experts felt that VADAF is concise and useful. E1 explained that “the system is
well designed and quite user-friendly.” E2 was particularly interested in using VADAF to explore
real-world datasets. E2 also mentioned that “the Client View is not well suitable for real-world
FL system due to the privacy requirement. But the visualization design and anomaly detection
method for FL in VADAF is novel and effective.” E3 commented that “the system is easy to use. The
interface is meaningful with all the graphical information and necessary textual representations.”

8 DISCUSSION
VADAF is our first try in visualizing and analyzing the FL training process, especially abnormal
clients. Three use cases demonstrate the effectiveness of our system. Nevertheless, there is still
space for improvement.

Generalization. In this paper, our training task follows horizontal federated learning and is
similar to Google’s mobile keyboard prediction work [19]. However, there are many other FL
application scenarios [20], which may have some differences in FL architecture and training process.
For example, when the participants are multiple large organizations whose devices (clients) are
generally stable, it is probably unnecessary to make client selection at the start of each iteration for

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

26:20 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

a limited number of stable clients. These factors may limit the generalization of our system, but
some general designs and approaches in our work, such as training dynamics visualization and
anomaly detection, are worthy references for future relevant studies. All in all, it still needs more
attempts to survey and analyze various FL tasks and architectures.

Scalability. Our approach is not limited to data and model selection. Although the confusion
matrix part only supports classification tasks. Other designs can apply to most FL tasks. The
focus+context technique we apply is beneficial to scalable data size. The main concern is the
performance and effect of the model difference representation method for higher dimensional
vectors. For the model difference representation images, we have the idea to add a detection
algorithm in the model difference representation generation process to automatically magnify
some internal details of interest, which probably show the patterns to explain the possible causes
of anomaly. This can increase the scalability of model difference representation for much higher
dimensional vectors and is more conducive to our analysis.

Real-time analysis. Currently, all the training dynamics are collected offline into a database in
advance. This offline environment is convenient for our abnormal client analysis tasks. However, it
is not practical and has privacy leakage risks to store all the training logs, especially client model
parameters in the central server. In our use cases, we have proved the effectiveness of using model
difference representation in the form of a color bar for tracking model anomaly. Thus we can
save all the client model difference representation images instead of model parameter values to
verify model anomaly in a real-time system. These images can assist experts in making decisions
on whether to discard some probable abnormal clients. Our anomaly detection approach is also
applicable to continuously incoming data. Nonetheless, the specific design for a real-time FL visual
analysis system still needs more consideration.

9 CONCLUSION
In this paper, we pose a novel visual analytics solution to disclose the FL training dynamics and
analyze client anomalies, which can help experts better understand the FL training process and
improve the global model. It is a pioneering effort in visual analysis for abnormal client detection
in the FL setting. In our system, we design four key views to show training logs from different
levels and perspectives. An anomaly detection method is integrated into our Projection View
to find those potential anomalous clients. Model evaluation and representation approaches are
proposed to analyze the abnormal clients. Furthermore, we present three use cases to demonstrate
the effectiveness of our system in interactively analyzing the FL training process and detecting
abnormal clients. Future work will focus on the improvement of our system’s scalability and the
integration in real-time FL training environment. We also plan to explore visual design and visual
analysis methods in different FL scenarios.

10 ACKNOWLEDGMENTS
This paper is supported by National Natural Science Foundation of China (61772456, 61761136020).
This paper is also funded by Alibaba-Zhejiang University Joint Institute of Frontier Technologies
(AZFT).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI’16). USENIX Association, USA, 265–283.

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:21

[2] Scott Alfeld, Xiaojin Zhu, and Paul Barford. 2016. Data Poisoning Attacks against Autoregressive Models. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press, 1452–1458.

[3] Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice Simard, and Jina Suh. 2015. ModelTracker:
Redesigning Performance Analysis Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA, 337–346. https://doi.org/10.1145/2702123.
2702509

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2019. How To Backdoor
Federated Learning. arXiv:1807.00459

[5] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2016. Debugging Distributed Systems. Commun.
ACM 59, 8 (July 2016), 32–37. https://doi.org/10.1145/2909480

[6] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon,
Jakub Konečný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. arXiv:1902.01046

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 1175–1191. https://doi.org/10.1145/3133956.3133982

[8] Ingwer Borg and Patrick Groenen. 2003. Modern multidimensional scaling: Theory and applications. Journal of
Educational Measurement 40, 3 (2003), 277–280.

[9] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying Density-Based Local
Outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00).
Association for Computing Machinery, New York, NY, USA, 93–104. https://doi.org/10.1145/342009.335388

[10] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. 2019. LEAF: A Benchmark for Federated Settings. arXiv:1812.01097

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection: A Survey. 41, 3, Article 15 (July
2009), 58 pages. https://doi.org/10.1145/1541880.1541882

[12] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted Backdoor Attacks on Deep Learning
Systems Using Data Poisoning. arXiv:1712.05526

[13] Dan C Cosma and Radu Marinescu. 2007. Distributable features view: Visualizing the structural characteristics of
distributed software systems. In 2007 4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis. IEEE, 55–62.

[14] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. Local Model Poisoning Attacks to Byzantine-
Robust Federated Learning. arXiv:1911.11815

[15] Shuhao Fu, Chulin Xie, Bo Li, and Qifeng Chen. 2019. Attack-Resistant Federated Learning with Residual-based
Reweighting. arXiv:1912.11464

[16] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2020. Mitigating Sybils in Federated Learning Poisoning.
arXiv:1808.04866

[17] Google. 2019. TensorFlow Federated: Machine Learning on Decentralized Data. Retrieved Oct 2, 2019 from https:
//www.tensorflow.org/federated

[18] Dan Gunter, Brian Tierney, Brian Crowley, Mason Holding, and Jason Lee. 2000. NetLogger: A Toolkit for Distributed
System Performance Analysis (MASCOTS ’00). IEEE Computer Society, USA, 267.

[19] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. 2019. Federated Learning for Mobile Keyboard Prediction. arXiv:1811.03604

[20] Li Huang and Dianbo Liu. 2019. Patient Clustering Improves Efficiency of Federated Machine Learning to predict
mortality and hospital stay time using distributed Electronic Medical Records. arXiv:1903.09296

[21] Peter J Huber. 2011. Robust statistics. Springer.
[22] B. Iglewicz and D.C. Hoaglin. 1993. How to Detect and Handle Outliers. ASQC Quality Press. https://books.google.nl/

books?id=siInAQAAIAAJ
[23] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. 2018. Manipulating Machine Learning: Poisoning

Attacks and Countermeasures for Regression Learning. In 2018 IEEE Symposium on Security and Privacy (SP). 19–35.
[24] Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and Duen Horng Polo Chau. 2017. Activis: Visual exploration of

industry-scale deep neural network models. IEEE transactions on visualization and computer graphics 24, 1 (2017),
88–97.

[25] Minsuk Kahng, Nikhil Thorat, Duen Horng Polo Chau, Fernanda B Viégas, and Martin Wattenberg. 2018. Gan
lab: Understanding complex deep generative models using interactive visual experimentation. IEEE transactions on
visualization and computer graphics 25, 1 (2018), 1–11.

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
http://arxiv.org/abs/1807.00459
https://doi.org/10.1145/2909480
http://arxiv.org/abs/1902.01046
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/342009.335388
http://arxiv.org/abs/1812.01097
https://doi.org/10.1145/1541880.1541882
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1911.11815
http://arxiv.org/abs/1912.11464
http://arxiv.org/abs/1808.04866
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
http://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1903.09296
https://books.google.nl/books?id=siInAQAAIAAJ
https://books.google.nl/books?id=siInAQAAIAAJ

26:22 Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang and Wei Chen

[26] Edwin M. Knorr and Raymond T. Ng. 1998. Algorithms for Mining Distance-Based Outliers in Large Datasets. In
Proceedings of the 24rd International Conference on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 392–403.

[27] Edwin M. Knorr and Raymond T. Ng. 1999. Finding Intensional Knowledge of Distance-Based Outliers. In Proceedings
of the 25th International Conference on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 211–222.

[28] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016. Federated Optimization: Distributed
Machine Learning for On-Device Intelligence. arXiv:1610.02527

[29] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2017.
Federated Learning: Strategies for Improving Communication Efficiency. arXiv:1610.05492

[30] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto (2009).

[31] André Kutzleb. 2017. Visual analytics of big data from distributed systems. Master’s thesis. University of Stuttgart.
http://dx.doi.org/10.18419/opus-9585

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[33] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Licata. 2013. Detecting outliers: Do not
use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social
Psychology 49, 4 (2013), 764–766.

[34] Suyi Li, Yong Cheng, Yang Liu, Wei Wang, and Tianjian Chen. 2019. Abnormal Client Behavior Detection in Federated
Learning. arXiv:1910.09933

[35] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. 2020. Learning to Detect Malicious Clients for Robust
Federated Learning. arXiv:2002.00211

[36] Dongyu Liu, Weiwei Cui, Kai Jin, Yuxiao Guo, and Huamin Qu. 2018. Deeptracker: Visualizing the training process of
convolutional neural networks. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 1 (2018), 6.

[37] Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, and Shixia Liu. 2017. Analyzing the training processes of deep generative
models. IEEE transactions on visualization and computer graphics 24, 1 (2017), 77–87.

[38] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. 2016. Towards better analysis of deep
convolutional neural networks. IEEE transactions on visualization and computer graphics 23, 1 (2016), 91–100.

[39] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. 2017. Communication-
Efficient Learning of Deep Networks from Decentralized Data. arXiv:1602.05629

[40] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learning Differentially Private Recurrent
Language Models. arXiv:1710.06963

[41] Jeff Miller. 1991. Reaction time analysis with outlier exclusion: Bias varies with sample size. The quarterly journal of
experimental psychology 43, 4 (1991), 907–912.

[42] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. 2017. Understanding Hidden Memories of Recurrent
Neural Networks. In 2017 IEEE Conference on Visual Analytics Science and Technology (VAST). 13–24.

[43] Gerhard Münz, Sa Li, and Georg Carle. 2007. Traffic anomaly detection using k-means clustering. In GI/ITG Workshop
MMBnet. 13–14.

[44] Kristin Potter, Hans Hagen, Andreas Kerren, and Peter Dannenmann. 2006. Methods for presenting statistical
information: The box plot. Visualization of large and unstructured data sets 4 (2006), 97–106.

[45] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient Algorithms for Mining Outliers from Large
Data Sets. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00).
Association for Computing Machinery, New York, NY, USA, 427–438. https://doi.org/10.1145/342009.335437

[46] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C Telea. 2016. Visualizing the hidden activity of
artificial neural networks. IEEE transactions on visualization and computer graphics 23, 1 (2016), 101–110.

[47] Thomas C Redman. 1998. The impact of poor data quality on the typical enterprise. Commun. ACM 41, 2 (1998), 79–82.
[48] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D Williams. 2016. Squares: Supporting interactive

performance analysis for multiclass classifiers. IEEE transactions on visualization and computer graphics 23, 1 (2016),
61–70.

[49] Peter J Rousseeuw and Christophe Croux. 1993. Alternatives to the median absolute deviation. Journal of the American
Statistical association 88, 424 (1993), 1273–1283.

[50] Shiqi Shen, Shruti Tople, and Prateek Saxena. 2016. Auror: Defending
against Poisoning Attacks in Collaborative Deep Learning Systems. In Proceedings of the 32nd Annual Conference on
Computer Security Applications (ACSAC ’16). Association for Computing Machinery, New York, NY, USA, 508–519.
https://doi.org/10.1145/2991079.2991125

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

http://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1610.05492
http://dx.doi.org/10.18419/opus-9585
http://arxiv.org/abs/1910.09933
http://arxiv.org/abs/2002.00211
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1710.06963
https://doi.org/10.1145/342009.335437
https://doi.org/10.1145/2991079.2991125

VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning 26:23

[51] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush. 2017. Lstmvis: A tool for visual
analysis of hidden state dynamics in recurrent neural networks. IEEE transactions on visualization and computer
graphics 24, 1 (2017), 667–676.

[52] Richard Tomsett, Kevin Chan, and Supriyo Chakraborty. 2019. Model poisoning attacks against distributed machine
learning systems. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Tien Pham
(Ed.), Vol. 11006. International Society for Optics and Photonics, SPIE, 481 – 489. https://doi.org/10.1117/12.2520275

[53] Junpeng Wang, Liang Gou, Wei Zhang, Hao Yang, and Han-Wei Shen. 2019. DeepVID: Deep Visual Interpretation and
Diagnosis for Image Classifiers via Knowledge Distillation. IEEE transactions on visualization and computer graphics 25,
6 (2019), 2168–2180.

[54] WeBank. 2019. Federated AI Technology Enabler(FATE). Retrieved Oct 2, 2019 from https://github.com/FederatedAI/FATE
[55] XiguangWei, Quan Li, Yang Liu, Han Yu, Tianjian Chen, and Qiang Yang. 2019. Multi-Agent Visualization for Explaining

Federated Learning. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 6572–6574. https://doi.org/10.24963/ijcai.2019/
960

[56] Zhaoxian Wu, Qing Ling, Tianyi Chen, and Georgios B. Giannakis. 2019. Federated Variance-Reduced Stochastic
Gradient Descent with Robustness to Byzantine Attacks. arXiv:1912.12716

[57] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2 (2019), 12.

[58] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2017. Understanding deep learning
requires rethinking generalization. arXiv:1611.03530

[59] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. 2018. Manifold: A model-agnostic framework for
interpretation and diagnosis of machine learning models. IEEE transactions on visualization and computer graphics 25,
1 (2018), 364–373.

[60] Xingquan Zhu and Xindong Wu. 2004. Class noise vs. attribute noise: A quantitative study. Artificial intelligence review
22, 3 (2004), 177–210.

ACM Trans. Interact. Intell. Syst., Vol. 11, No. 3-4, Article 26. Publication date: September 2021.

https://doi.org/10.1117/12.2520275
https://github.com/FederatedAI/FATE
https://doi.org/10.24963/ijcai.2019/960
https://doi.org/10.24963/ijcai.2019/960
http://arxiv.org/abs/1912.12716
http://arxiv.org/abs/1611.03530

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Attack Strategy

	3 Related Work
	3.1 Visual Analytics for Machine Learning
	3.2 Visualization for Distributed System
	3.3 Anomaly Detection

	4 VADAF
	4.1 Requirement Analysis
	4.2 System Overview
	4.3 Data and Model Description
	4.4 Abnormal Client Detection

	5 User Interface
	5.1 Main View
	5.2 Projection View
	5.3 Client View
	5.4 Model View
	5.5 Interaction

	6 Use Cases
	6.1 Case 1: Understanding FL training process
	6.2 Case 2: analyzing model poison in FL
	6.3 Case 3: analyzing data poison in FL

	7 Expert Feedback
	8 Discussion
	9 Conclusion
	10 Acknowledgments
	References

